N91-28206

June 26, 1990

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Solid Rocket Propulsion

Briefing To: Space Transportation Propulsion Symposium

Ronald L. Nichols Mgr. Solid Propulsion Research and Technology Office (ER41) FTS 824-2681 (205) 544-2681

Presented by C. Clinton, MSFC

NASA'S Commitment to SRM use

- Planned use well into 21st Century
- ◆ Typically launch about 300 SRM's over 5 year period
- Approximately \$30B of hardware-depend on successful SRM operation during 5 year period
- Historical success rate has proven to be about 98%

Improvements Needed

- Success rates must be improved for manned flight and high-tech hardware launches
- Costs must be controlled to remain competitive

Solid Rocket Propulsion

Shortfalls

Cultural

- Based on empirical approach hot firings to prove success vs. technical understanding
- Extensive assumptions used in invalidated analytical models
- Designs based on tactical and strategic systems where 98% success rate is adequate
- Lack of fundamental understanding of engineering principals for design and analysis, processing and verification

Managerial/Leadership

- Absence of focused, contlinuous, coordinated government commitment and leadership during past two decades
- Major IR&D efforts in ballistics areas

Solid Rocket Motor Failure Database

Solid Rocket Propulsion

Current Programs

Solid Propulsion Integrity Program (SPIP)

Improve the success rate of the Nation's Solid Rocket Motors through

- Development of engineering base
- Generation of fundamental technical understanding of current SRM Technologies
- Providing tools for design, margin of safety prediction, process control, inspection and performance validation
- Controlled product variability with process sensitivity knowledge

Current Programs (Continued)

- Redesigned Solid Rocket Motor Enhancements
 - Facilitization
 - Contamination Control
- Advanced Solid Rocket Motor Development
 - Specific components and system
 - Improved materials
 - Production automation

Solid Rocket Propulsion

Current Programs (Continued)

ALS/Low Cost Case, Insulation And Nozzle (LOCCIN)

- Attaching High Cost of SRM's
 - Innovative Designs
 Low Cost Materials

 - Reduced Manufacturing/Fabrication Labor
 - Efficient Assembly/Checkout
 - Competition
 - Track Materials and Manufacturing Cost Savings
- Improving Reliability Through
 Robust Designs

 - Verify Safety Margins
 - Define and Demonstrate Materials and Process Sensitivities
 - Set Materials and Process Specifications Based on Sound Accept/Reject Criteria
- Technical Maturity Achieved By
 Laboratory Development

 - Sub-Scale Demonstration
 - Provide Technology for Full Scale Development

Current Programs

Solid Propulsion Integrity Program - Engineering Base

	Predictive Capability	Materials Properties & Performance	Test Techniques	Process Understanding	Process Monitoring & Control	Improved Materials & Process	Instrumenta- tion Development	NDE & Effects Of Defects
Composite Cases								
Propellant	x	×	×					
Nozzles	×	, x	x	×	×	×	×	×
Bondlines	×	x .	×	x	×		×	×
Internal/Flow	х		X				×	
Joints & Seals								
Integration & Verification	×	×	×	×		×	×	×

Solid Rocket Propulsion

Summary

- Progress being made in
 - Cultural
 - Managerial
 - Engineering base development
- Commitment is continuous through 1990's
- New initiatives that reduce cost and enhance reliability needed
- Solutions to environmental and flight safety issues should be aggressively pursued

Additional Critical Issues/Recommendations

- Expand SPIP to complete matrix
- NASA involvement in clean propellant
- Develop thrust termination/restart SRM capability